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A PACKET OF ELASTIC PLATES JOINED ALONG A PERIODIC SYSTEM OF SEGMENTS

UDC 539.375V. V. Sil’vestrov and I. A. Ivanov

A packet of infinite thin elastic plates joined along a periodic system of collinear segments is consid-
ered. The elastic properties and thicknesses of the plates can be different. The plates are loaded by
tensile forces at infinity. An algorithm for determining the complex potentials governing stresses in
the plates is constructed by solving the Riemann matrix boundary-value problem. The stress-intensity
factors are found and their graphs are given.

Formulation of the Problem. Let n infinite thin elastic homogeneous isotropic plates E1, E2, . . . , En
occupying the entire complex plane z = x+ iy be superimposed on one another and joined along a periodic system
of segments lj = [a+ jT, b+ jT ] (j = 0,±1,±2, . . .) on the real x axis. It is assumed that there are no interlayers
and initial tension between the plates. The plate Ek (k = 1, n ) has thickness hk, shear modulus µk, and Poisson’s
ratio νk. In the band of periods in the plate Ek, the stresses (σ∞x )′k, (σ∞y )′k, and (τ∞xy)′k normalized by the plate
thickness and the rotation (ω∞)′k are specified for y → +∞, and the corresponding quantities (σ∞x )′′k , (σ∞y )′′k , (τ∞xy)′′k ,
and (ω∞)′′k are specified for y → −∞.

The following assumptions are used: 1) the plates are in a generalized plane stress state and interact only
along the joint lines, the spatial effect of stress concentration is negligible on the joint lines, and friction between
the plates is absent; 2) at the ends of the segments lj , the stresses and derivatives of displacements with respect
to x can tend to infinity with an order less than 1 (at the remaining points, these quantities are continuous).

On the joint lines, the following conjugation conditions must be satisfied:

(u+ iv)+
k = (u+ iv)−k , k = 1, n, (u+ iv)+

k = (u+ iv)+
k+1, k = 1, n− 1,

(1.1)
n∑
k=1

hk(σy − iτxy)+
k =

n∑
k=1

hk(σy − iτxy)−k .

Here (u + iv)k is the displacement vector of the plate Ek and (σy, τxy)k are the normal and shear stresses in the
plate Ek, respectively, normalized by the plate thickness. The first 2n−1 conditions in (1.1) express the equality of
the displacements of the plates E1, E2, . . . , En on the joint line and the last condition is the condition of equilibrium
on this line.

It is required to determine the periodic stress state of the packet of plates described above. For two plates,
this problem was solved in [1]. Packets of plates joined along a finite number of segments, concentric circles or open
curves were studied in [2–4].

For the plate Ek, we express the stresses, rotation, and partial derivatives of the displacements with respect
to x in terms of two piecewise holomorphic functions Φk(z) and Ωk(z) [5]:

(σx + σy)k = 4 Re Φk(z), 2µkωk = (1 + æk) Im Φk(z), æk = (3− νk)/(1 + νk),

(σy − iτxy)k = Φk(z) + Ωk(z̄) + (z − z̄)Φ′k(z), (1.2)

2µk(u′ + iv′)k = ækΦk(z)− Ωk(z̄)− (z − z̄)Φ′k(z), k = 1, n.

The functions Φk(z) and Ωk(z) are periodic with fundamental period T . According to the theory of periodic
analytic functions [6], in the band of periods 0 6 Re z 6 T at infinity, these functions are given by
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Φk(z) = γ′k +O(e−|y|), Ωk(z) = δ′k +O(e−|y|) as y → +∞; (1.3)

Φk(z) = γ′′k +O(e−|y|), Ωk(z) = δ′′k +O(e−|y|) as y → −∞. (1.4)

Formulas (1.2), (1.3), and (1.4) can be combined to give

γ′k =
1
4

[(σ∞x )′k + (σ∞y )′k] +
2iµk

1 + æk
(ω∞)′k,

δ′k =
1
4

[3(σ∞y )′′k − (σ∞x )′′k ]− i
[
(τ∞xy)′′k +

2µk
1 + æk

(ω∞)′′k
]
,

(1.5)
γ′′k =

1
4

[(σ∞x )′′k + (σ∞y )′′k ] +
2iµk

1 + æk
(ω∞)′′k ,

δ′′k =
1
4

[3(σ∞y )′k − (σ∞x )′k]− i
[
(τ∞xy)′k +

2µk
1 + æk

(ω∞)′k
]
.

2. Solution of the Problem. Using formulas (1.2) and the conjugation conditions (1.1), we obtain the
following boundary-value problem for Φk(z) and Ωk(z) (k = 1, n ) in the class of periodic functions with fundamental
period T :

ækΦ+
k (t)− Ω−k (t) = ækΦ−k (t)− Ω+

k (t), k = 1, n,

µk+1

µk
[ækΦ+

k (t)− Ω−k (t)] = æk+1Φ+
k+1(t)− Ω−k+1(t), k = 1, n− 1, (2.1)

n∑
k=1

hk(Φ+
k (t) + Ω−k (t)) =

n∑
k=1

hk(Φ−k (t) + Ω+
k (t)), t ∈ l0.

Problem (2.1) is written in matrix form

AΦ+(t) = BΦ−(t) or Φ+(t) = A−1BΦ−(t), t ∈ l0, (2.2)

where

Φ(z) = {Φ1,Φ2, . . . ,Φn,Ω1,Ω2, . . . ,Ωn}t,

A =

(
A1 E

A2 A3

)
, B =

(
B1 E

B2 B3

)
,

A1 = diag {æ1,æ2, . . . ,æn}, B1 = A1, B2 = −A3,

A2 =



µ∗1æ1 −æ2 0 . . . 0 0

0 µ∗2æ2 −æ3 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . µ∗n−1æn−1 −kn
h1 h2 h3 . . . hn−1 hn


,

A3 =



0 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0

−h1 −h2 . . . −hn


, B3 =



µ∗1 −1 0 . . . 0 0

0 µ∗2 −1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . µ∗n−1 −1

−h1 −h2 −h3 . . . −hn−1 −hn


,

µ∗k = µk+1/µk.
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We seek the eigenvalues of the matrix A−1B. To this end, we consider the characteristic equation |A−1B −
λE| = 0, which can be written as |B−λA| = 0. After transformations of the matrix B−λA, the equation becomes
C(1− λ)n+1(1 + λ)n−1 = 0, where C = const 6= 0.

One can show that the algebraic multiplicities of the eigenvalues of the matrix A−1B are equal to their
geometrical multiplicities. Consequently, the eigenvectors of the matrix A−1B are linearly independent and the
matrix S−1A−1BS (S is a matrix whose columns are the eigenvectors of the matrix A−1B) is a diagonal matrix
with the elements λ1 = λ2 = . . . = λn+1 = 1 and λn+2 = λn+3 = . . . = λ2n = −1 [7]. Problem (2.2) is then split
into 2n independent problems

F+
j (t) = F−j (t) (t ∈ L, j = 1, n+ 1), F+

j (t) = −F−j (t) (t ∈ L, j = n+ 2, 2n) (2.3)

for the components F1, F2, . . . , F2n of the new piecewise holomorphic vector function F (z) = S−1Φ(z). At the ends
of the segment l0, the function F (z) can tend to infinity with an order less than 1, and in the band of periods at
infinity, it has, by virtue of (1.3), (1.4), and (2.2), the representations

F (z) = S−1G′ +O(e−|y|) as y → +∞, F (z) = S−1G′′ +O(e−|y|) as y → −∞; (2.4)

G′ = {γ′1, γ′2, . . . , γ′n, δ′1, δ′2, . . . , δ′n}t, G′′ = {γ′′1 , γ′′2 , . . . , γ′′n, δ′′1 , δ′′2 , . . . , δ′′n}t, (2.5)

where γ′k, γ′′k , δ′k, and δ′′k are determined by formulas (1.5) and O(e−|y|) is a vector function each component of
which is comparable to e−|y| for large y.

According to [8], problems (2.3) and (2.4) have periodic solutions

Fj(z) = dj , j = 1, n+ 1,

Fj(z) = χ(z)
(
c0j + ic1j cot

πz

T

)
, j = n+ 2, 2n, (2.6)

χ(z) =
(

sin
πz

T

)/√
sin

π(z − a)
T

sin
π(z − b)

T
;

(S−1G′)j = (S−1G′′)j = dj , j = 1, n+ 1; (2.7)

(S−1G′)j = c0j + c1j , (S−1G′′)j = c0j − c1j , j = n+ 2, 2n, (2.8)

where (S−1G′)j and (S−1G′′)j are the jth components of the vectors S−1G′ and S−1G′′, respectively, and the
function χ(z) means the single-valued branch in the band 0 6 Re z 6 T with a cut along the segment [a, b], whose
values tend to 1 as y → ±∞. The coefficients c0j and c1j are uniquely determined from (2.8), and equalities
(2.7) impose n + 1 complex conditions on the stresses and rotations in the band of periods at infinity and on the
characteristics of the plates. With allowance for (1.5) and (2.5), from equalities (2.7) (as in the case of two plates
[1]), we obtain

(1 + æk)[(σ∞x )′k − (σ∞x )′′k ] = (3− æk)[(σ∞y )′k − (σ∞y )′′k ], k = 1, n,

(τ∞xy)′k − (τ∞xy)′′k = −2µk[(ω∞)′k − (ω∞)′′k ], k = 1, n, (2.9)

n∑
k=1

hk[(τ∞xy)′k − (τ∞xy)′′k ] = 0,
n∑
k=1

hk[(σ∞y )′k − (σ∞y )′′k ] = 0.

Below, we assume that these conditions are satisfied.
3. Stress-Intensity Factors (SIF). Since Φ(z) = SF (z), it follows from (2.6) that in the neighborhood

of the point z = b, the functions Φk(z) and Ωk(z) have the form

Φk(z) = Ak(z − b)−1/2 +O(1), Ωk(z) = −ækAk(z − b)−1/2 +O(1),
(3.1)

Ak = sin
πb

T

2n∑
j=n+2

skj

(
c0j + ic1j cot

πb

T

)/√ π

T
sin

π(b− a)
T

,

where skj are the elements of the matrix S;
√
z − b means the single-valued branch in the plane with a cut along

the radial (−∞, b] on the real axis, whose value is equal to 1 for z − b = 1.
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Fig. 1

It follows from (3.1) that in the neighborhood of the joint line, the complex potentials Φk(z) and Ωk(z) have
the same form as in the neighborhood of a rigid, thin, pointed inclusion [9]. Therefore, near the point z = b in the
plate Ek the SIF is given by

(k1 − ik2)k(b) = −2æk lim
z→b

√
2π(z − b) Φk(z) = −2

√
2πækAk.

Hence, in the neighborhood of the ends of the joint segments, the stress distribution is identical to that near the
apex of a rigid, thin, pointed inclusion in a plate.

Example No. 1. Let two plates E1 and E2 of equal thickness h1 = h2 = 1 with elastic characteristics
æ1 = 2.1 and æ2 = 2.3 be joined along the segments [−b + πj, b + πj], where j = 0,±1, . . . . We consider the
dependence of the SIF on the ratio µ2/µ1 for the following cases.

1. As y → +∞ and y → −∞, the stresses acting are, respectively, (σ∞y )′1 = σ and (σ∞x )′′1 = σ(æ1−3)/(1+æ1)
in the plates E1 and (σ∞y )′′2 = σ and (σ∞x )′2 = σ(æ2 − 3)/(1 + æ2) in the plates E2; the remaining stresses and
rotations vanish at infinity. In this case, conditions (2.9) are satisfied. Figure 1a shows the coefficient k11/σ versus
the ratio µ2/µ1 at the points z = ±b of the plate E1 for various b. In Fig. 1, curves 1–4 refer to b = 0.1π, 0.2π,
0.3π, and 0.4π, respectively. The coefficient k2 = k21 for the plate E1 does not depend on the ratio µ2/µ1 for any
b, whereas the SIFs for the plate E2 are obtained by multiplying the corresponding coefficients for the plate E1 by
−1.029. Table 1 lists the coefficient k21/σ for various values of b.

2. As y → +∞ and y → −∞, the only nonvanishing stresses in the plate E1 are (σ∞y )′1 = (σ∞y )′′1 = σ. Hence,
k21 = 0 for the plate E1. Figure 1b shows the coefficient k11/σ versus the ratio µ2/µ1 at the points z = ±b of the
plate E1 for various values of b. The SIFs for the plate E2 are obtained by multiplying the corresponding coefficients
for the plate E1 by −1.029.
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TABLE 1

b k21/σ k11/τ

0.1π −2.307 4.614

0.2π −1.543 3.086

0.3π −1.121 2.242

0.4π −0.750 1.499

Fig. 2

Example No. 2. Let three plates E1, E2, and E3 of equal unit thickness with elastic characteristics
æ1 = æ3 = 2.1, æ2 = 2.3, and µ1 = µ3 be joined along the segments [−b + πj, b + πj] (j = 0,±1, . . .). We now
consider the dependence of the SIF on the ratio µ2/µ1 for the following cases.

1. As y → +∞ and y → −∞, the stresses in the plate E2 have the form (τ∞xy)′2 = (τ∞xy)′′2 = τ ; the remaining
initial data are zero. Now k1 = 0 for all plates. Figure 1c shows the coefficient k21/τ = k23/τ versus the ratio µ2/µ1

at the points z = ±b of the plates E1 and E3 for various values of b. In this case, the SIFs for the plate E2 are
obtained by multiplying the SIFs for the plate E1 by −2.058.

2. The shear stresses (τ∞xy)′1 = (τ∞xy)′′3 = 2τ and the rotations (ω∞)′′1 = τ/µ1 and (ω∞)′3 = τ/µ3 occur in the
plate E1 as y → +∞ and in the plate E3 as y → −∞; the remaining initial data are zero. Hence, the coefficient
k1 = k11 of the plate E1 does not depend on the ratio µ2/µ1 for any b (the coefficient k11/τ as a function of b is
given in Table 1). Figure 1d shows the coefficient k21/τ versus the ratio µ2/µ1 for various values of b. In this case,
the SIFs for the plates E1 and E3 are the same, and the SIFs for the plate E2 are obtained by multiplying the SIFs
for the plate E1 by −2.058.

Example No. 3. Let the plates E1, E2, . . . , En of equal thickness with equal elastic characteristics æ

and µ are joined as a packet along the segments [−b + πj, b + πj]. As y → +∞ and y → −∞, the stresses
(σ∞y )′1 = (σ∞y )′′n = σ and (σ∞x )′′1 = (σ∞x )′n = σ(æ1 − 3)/(1 + æ1) act in the plates E1 and En, and the remaining
initial data are zero. Then, k1 = 0 for the case of two plates; for the case of three to five plates, Figs. 2a and b
show this coefficient versus the coefficient b for the plates E1 and E2, respectively.
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